
OBJECTIVE

CONCLUSIONS

 To evaluate existing and develop new methods for 

comparative effectiveness of treatments using 

registry data when outcomes are assessed at 

irregular visit schedules.

 Our proposed mixed-effects modeling method 

based on multiple imputations and rounding 

perform consistently better than last observation 

carried forward. 

 Additional simulation scenarios are needed to 

investigate the impact of:

▪ Visit frequency or of more complex informative 

data deletion mechanisms, in which case 

rounding may be more heavily impacted.

▪ Model misspecification of the mixed-effects 

model, in which case the performance of the 

LME may be compromised. 

 Ongoing work includes an application to real-world 

data in multiple sclerosis.

Estimation of Treatment 

Effects in Registry Data: 

Informative Patient Visits 

Require Careful Modeling
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Motivation
• In multiple sclerosis, evidence from comparative effectiveness 

research derived from observational data are increasingly needed.

• However, these data sources can be prone to bias, including 

outcome assessment biases due to informative missingness of 

relevant patient outcomes.

• As a motivating example, consider the definition of time to 

confirmed disease progression (CDP), which requires the 

Expanded Disability Status Scale (EDSS) to be measured at 2 

follow-up visits.

• In observational data sources, applying this definition is 

challenging because patient visits do not follow a planned follow-

up schedule.

• Existing mitigation methods (last observation carried forward 

[LOCF] or rounding) derive time to CDP by mapping the EDSS 

scores at observed, irregular visits to a regular schedule.

• However, they may create artificial lag in time to CDP, leading to 

erroneous conclusions on treatment effects.
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Simulation Study
Generate data with irregular visit patterns

• 500 patients per center, 20 centers, treatment A or B 

assigned as a function of age.

• EDSS generated every month for 24 months from a linear 

mixed model with an AR1 structure (𝜌 = 0.8).

• At each month, the generated EDSS are rounded to the 

nearest 0.5 and truncated between 0 and 9.5.

• Visits are deleted as a function of center, treatment, time 

and/or true (unobserved) EDSS scores.

EDSS imputations and time to CDP

• Compare LOCF, rounding and our LME with single 

imputation of the expected value (SI) or 20 multiple 

imputations (MI).

• Time to CDP derived with a 3-month confirmation window.

Estimation of treatment effect

• Time to CDP modeled with a Cox regression stratified by 

center, adjusted for age and baseline EDSS.

• For multiple imputations, Cox regression fitted separately 

in each dataset and estimates combined with Rubin’s rule.
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Time to Confirmed Disease Progression
It is defined as the time from baseline to an increase in:

• 1.5 points if baseline EDSS is 0

• 1.0 point if baseline EDSS is between 1.0 and 5.5

• 0.5 point if baseline EDSS is 6.0 or above

The increase must be confirmed at a visit 3 months later.

Proposed Mixed-Effects Modeling
• We propose to model the EDSS trajectories with a linear mixed 

model (LME) and generate imputations from the fitted model at the 

desired visit schedule.

• An Exponential spatial correlation structure on the errors can be 

used to account for within-patient correlations over time.

• Single imputations are generated as the expected value of EDSS 

at time t; with multiple imputations, an error term sampled from a 

multivariate normal distribution is added.
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Results
Derived time to CDP (Figure 3)

• The survival curves for time to CDP derived from LME with 

multiple imputations or from rounding are the closest to that based 

on the original data.

Estimated treatment effect (Figure 4)

• LME based on multiple imputations and rounding leads to 

consistently less biased log-hazard ratio estimators.

• LOCF only performs well in scenario 1 when the visit mechanism 

does not depend on treatment or on the unobserved EDSS scores.

• LME based on single imputation performs badly, probably because 

the imputations do not include error terms. 

Figure 1. EDSS scores recovered at 3, 6, 9 and 12 months 

with LOCF, rounding and mixed-effects modeling
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1
Probability of observing a visit decreases from 38% at month 

1 to 6% at month 24 (~4 visits/24 months)

2

Treatment A: probability of observing a visit at 6,12,18 and 24 

months is 85%, 3% otherwise (~5 visits/24 months)

Treatment B: probability of observing a visit at 9 and 18 

months is 67%, 3% otherwise (~3 visits/24 months)

3
Probability of observing a visit varies as a function of age, 

treatment and unobserved EDSS score (~4 visits/24 months)

Figure 2. Example EDSS trajectories in the original data (line) and 

EDSS at observed visits (■) in 3 scenarios.

Figure 3. Survival curves for time to CDP calculated from the original data 

and from imputed EDSS with LOCF, rounding and LME (SI and MI).

Figure 4. Absolute bias in estimated hazard ratio across 100 simulations. 
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